LETHAL IN DISGUISE 2

How Crowd-Control Weapons Impact Health and Human Rights

Disorientation Devices
Weapon profile

The UN considers “disorientation or distraction devices” as bomb-like instruments designed to daze or warn groups or individuals through some combination of noise, light, overpressure, or fragmentation. Common names for handheld weapons of this class include stun grenades, flash-bang grenades, blast balls, sting-ball grenades, stinger grenades, lasers, or concussion grenades.

Flash-bang explosive devices were initially developed by the British Special Air Service in the 1960s and have been used for military combat training for decades. The first documented use of these devices outside of training was at Entebbe, Uganda in 1976, when the Israeli army used them in efforts to rescue hostages. They were used in 1977 in Mogadishu, Somalia, and at a siege of the Iranian embassy in London in 1980. The transition from military operations to police use occurred slowly over time. Use in urban settings and on civilian populations altered how the weapons were used, as well as the resulting injuries. Specialised law enforcement agencies like Special Weapons and Tactics (SWAT) initially developed similar weapons to use in hostage situations.

176 UN Guidance on LLWs above n 6.
178 Steve James id.
179 Id.
The use of stun grenades in crowd control has increased significantly over the past several years, and now these weapons are manufactured by dozens of companies worldwide. They are frequently used alongside other weapons, such as chemical irritants and/or projectiles. With poor regulation and almost no quality control, defective and misfiring stun grenades have been identified in several settings where there were limited regulations or guidelines on use.

Mechanism of action

Flash-bang or stun grenades are usually constructed like a conventional grenade, with an explosive powder that ignites when struck by a fuse. These devices typically generate noise and a bright flash by the rapid oxidation of a pyrophoric metal, such as magnesium or aluminium; this process can generate temperatures in excess of 3,000 degrees Celsius. Some devices generate sound that has been measured in excess of 178 decibels (dB), at least ten times louder than most gunshots. Both the flash and the bang usually last less than one second, momentarily activating photoreceptor cells in the eye and causing blindness for about five seconds until the eye restores itself to its normal, unstimulated state. The loud blast causes temporary loss of hearing and of balance and generates a sense of disorientation. The concomitant blindness, hearing loss, and disorientation can result in falls. Moreover, groups of people simultaneously experiencing these symptoms can result in panic. With concomitant use of other weapons, stampedes have been reported.

Dazzling lasers are a subset of distraction devices that are designed to use laser or LED lights at long-range distances (1000 metres in light, 3000 metres in the dark) to temporarily disrupt vision. Dazzling laser weapons can be rifle-shaped, baton-shaped, or mounted onto other weapons. Even brief exposures (especially at close range) can result in temporary blindness and, in some cases, long-term vision loss, headaches, blurred vision, and sensitivity to light.

When distraction devices detonate, the case ruptures with significant force, so individuals standing near an explosion may suffer traumatic injury from the resulting pressure. The case can also rupture in such a way that high-velocity metal or plastic fragments are

182 Steve James, “Flash Bang 101” above n 177.
sent in multiple directions. These fragments are often unevenly distributed in size, shape, and direction and can pose a generalised hazard to anyone nearby.183 In addition to the shrapnel risk posed by fragmentation of the device casing, some devices are designed to deliberately scatter highvelocity rubber or plastic projectiles around the blast radius. Finally, projectiles with disorienting characteristics can be direct-fired at individuals, carrying with them similar risks as KIPs.

Given the lack of regulation of these weapons internationally, defective or poorquality weapons are reported frequently. These weapons can explode spontaneously or have more dangerous components that can spark fires and cause severe injuries.

Health effects

Stun grenades are—as explosive devices—by nature indiscriminate. When they are used either as distraction devices to facilitate entry or as means of crowd dispersal, the limited control users have over their placement may expose unintended targets to the risk of serious injury. A 2015 report documented more than 50 cases of severe injuries and deaths from the use of stun grenades since 2000 in the U.S.184 When used indoors or in dense crowds, these risks are amplified and can create additional hazards through fires as well as psychological panic they may provoke.

As with all explosives, stun grenades carry the risk of blast injury. These injuries are complex and result from pressure waves created by

<table>
<thead>
<tr>
<th>Type of Blast Injury</th>
<th>Cause</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary blast injury</td>
<td>Supersonic pressure shock waves from the blast.</td>
<td>Internal injuries, especially of delicate membranes like the eardrum and the lung membranes.</td>
</tr>
<tr>
<td>Secondary blast injury</td>
<td>Explosion and fragmentation of objects.</td>
<td>Blunt and penetrating trauma from explosive devices.</td>
</tr>
<tr>
<td>Tertiary blast injury</td>
<td>Displacement of air causes blast wind that can push people into solid objects.</td>
<td>Blunt and penetrating trauma, including fractures and head trauma.</td>
</tr>
<tr>
<td>Quaternary blast injury</td>
<td>Miscellaneous injuries caused by other parts of the explosion.</td>
<td>Burns, respiratory injuries from flames and smoke, crush injuries, eye injuries, psychiatric trauma (PTSD).</td>
</tr>
</tbody>
</table>

Figure 11: Blast injury.

The use of stun grenades for crowd control is an example of the inappropriate, inadequately regulated use of military weapons for crowd management.

The blast. Blast injuries from close proximity explosions can lead to internal haemorrhage, eardrum rupture, lung injury, amputation, fractures, and degloving injuries (extensive skin removal that exposes underlying tissue). In 2011, a U.S. SWAT officer died of internal bleeding when a stun grenade exploded in his hand while he was checking it.\(^{185}\) A French activist was killed in 2014 by an OF-F1 “blast-ball” style grenade—a weapon now prohibited in France—when it detonated after becoming lodged between his jacket and backpack.\(^{186}\) During the George Floyd protests in Seattle, United States, a woman went into cardiac arrest after being hit in the chest with a “blast-ball” style hybrid projectile that combined a concussive detonation with chemical irritants.\(^{187}\)

The use of stun grenades for crowd control is an example of the inappropriate, inadequately regulated use of military weapons for crowd management.

In addition to injuries caused directly by the primary blast wave, such as ear-drum rupture or lung injury, secondary and tertiary injuries can also occur as a result of these explosive devices. All weapons are made of both metal and plastic parts that may fragment during the explosion and act as shrapnel. Some weapons, such as “sting-ball” grenades, are specifically designed to fragment and forcefully eject shrapnel across the blast area. These weapons behave as KIPs in terms of ballistics but are incapable of being aimed, resulting in weapons that are both completely indiscriminate and impossibly imprecise. Serious injuries have been documented from these unaimed impact projectiles.\(^{188}\) These include penetrating injury, skull fracture, severe ocular trauma, and enucleation.\(^{189}\) Tertiary injuries occur from being thrown on the ground by their force, and quaternary injuries result from fires and other results of the blast.

Stun grenades burn extremely hot and can cause life-threatening thermal injuries. A 2015 report by ProPublica, summarised in our first *Lethal in Disguise* report, identified more than 50 people seriously injured or killed by stun grenades since 2000, with

Stun grenades are—as explosive devices—by nature indiscriminate.

thermal injury being the primary mechanism of injury. Furthermore, stun grenades can cause fires in structures; these fires have led to fatalities. Defective and poorly designed weapons may play a role in injury severity. In one notable case from 2014 that illustrates the complexity of injuries arising from stun grenades: after a stun grenade was thrown into his crib during a raid of his home, an 18-month-old boy sustained a chest wound so deep it exposed his ribs. He also suffered third-degree burns that required him to be placed in a medically induced coma, endure weeks of ICU-level care, and undergo numerous skin grafting surgeries.

In addition to the risks associated with their blast, some distraction devices are designed to be fired from grenade launchers or similar platforms. When aimed (inappropriately) at individuals, the blast risk is compounded by the kinetic risk of what is essentially an improvised KIP. In Portland, US, two individuals were severely injured in 2018 by “airborne warning/signalling munitions” fired by police directly at protesters. One suffered a traumatic brain injury after being shot in the back of the head with such a round, while another suffered third-degree burns and impact wounds after being shot in the chest and arm. Concerns about direct-fire injuries also have been raised following numerous reported accounts from Colombia of the Venom system being used in a direct-fire capacity with stun grenades.

The use of stun grenades for crowd control is an example of the inappropriate, inadequately regulated use of military weapons for crowd management. While the stated objective of stun grenades is to cause disorientation and a temporary sense of panic, the potential for severe blast injuries and even death caused by the pressure of the blast or by shrapnel from the fragmentation of plastic and metal constituents of the grenade is disproportionately high. The blinding light and deafening sound they produce can also cause injuries indiscriminately.

What has changed?

› **Fragmentation injuries:** Since 2016, there has been a growing recognition of the hazards posed by the shower of fragmented pieces from distraction devices. Upon detonation, distraction devices may—unintentionally or by design—disperse dozens of metal or plastic shards as shrapnel in a spherical radius without any control of what they hit. Each fragment behaves, in effect, as a kinetic impact projectile, with one crucial difference: the user of the distraction device has no more than the most rudimentary control of the trajectory of these projectiles. These weapons are, therefore, fundamentally indiscriminate impact weapons when used in the context of crowd control.

› **Severe kinetic injuries from distraction devices:** Severe kinetic injuries from distraction devices, including amputation and loss of sight, have been recorded in the medical literature over the last decade in France, both before and after the Yellow Vests protests. Fragmentation injuries from stun grenades used to disperse the Gezi Park protests were also reported in the medical literature in Turkey. During the Euromaidan protests in Ukraine, at least 133 individuals suffered traumatic injuries as a result of stun grenade usage, mostly because of the fragmentation of the weapons. In the United States, stun grenades were widely used during the George Floyd protests, resulting in numerous injuries.

› **Multiple stun grenade launchers:** A worrisome trend in weapons research and development is “area-effect” stun grenades and delivery systems designed to project multiple bomblets across great distances. The commercial Venom multiple-launch system has already been restricted by a court order in Popayán, Colombia, over concerns about the indiscriminate nature of the unaimed projectiles.

201 Juzgado Décimo Administrativo Mixto de Oralidad Circuito de Popayán No. 065 de 2021, file 19001-33-33-010-2021-00085-00 ACUMULADO AL PROCESO 1900133-33-010-2021-00089-00, 2 June 2021, pp. 35 and 36.

Meanwhile, the United States Defense Department is developing a “non-lethal indirect fire munition” fired from an 81-mm mortar that would disperse multiple flash-bang bomblets over a kilometre away. Similar to outlawed cluster munitions, the flash-bang mortar represents a disturbing trend towards greater and more indiscriminate use of these weapons, in spite of mounting evidence of their potential harm.

Growth of combined weapons: Blast balls are a type of hybrid stun grenade combining bright lights and loud sounds with chemical irritants. Blast ball grenades are similar to so-called “sting-ball” or “stinger” grenades that combine a flash-bang capability with a load of pellets designed to disperse randomly from the point of deflagration. Blast balls, however, replace the pellets with CS agents. Unlike many distraction devices, which function primarily through the ignition of a pyrotechnic metal and are not designed to fragment, these grenades, by nature, are designed to explode to release the irritant or KIPs. Stinger grenades and blast balls, therefore, carry an inherent risk of generating shrapnel upon deflagration, possibly dispersing a shower of sharp, irregular projectiles around the detonation site. This hybrid weaponry poses specific health risks: chemical burns and traumatic injuries combined with explosive injuries can be painful, debilitating, and challenging to treat.

Deaths and maimings from explosive stun grenades

The French police and gendarmerie (military police) frequently use explosive grenades for crowd control. Unlike many “flash-bang” grenades, which generate light and noise without rupturing the grenade case, these grenades carry an explosive charge that creates a violent blast upon deflagration. Numerous cases of severe injuries associated with these grenades have led to a reconsideration of their use in crowd control.

The “OF-F1” offensive stun grenade was first deployed in the 1970s, and as early as 1977 the grenade, which contains TNT, was implicated in the death of a protester. Its use was brought to national attention in 2014, when one such grenade fired by a gendarme killed an environmental protester at the proposed Sivens dam site. Their use, as well as the use of other high-explosive “offensive grenades,” was subsequently banned in France.

However, similar weapons remain in use under the moniker of “defensive” grenades. The GLI-F4 exploding tear gas grenade was extensively used during the Yellow Vests protests of 2018 and 2019. This “hybrid” weapon combines a concussive blast produced by TNT with a payload of CS agent. It is allegedly responsible for at least 30 injuries (including five disabling hand injuries) during the Yellow Vests protests. The GLI-F4 was withdrawn from use in early 2020, although concerns persist about its successor (the GM2L defensive grenade), which substitutes...
TNT for black powder yet still operates as an explosive device.211 Within a year of being put into use, serious injuries have already been reported from the GM2L.212

In regular use throughout this time period have been so-called “de-encirclement” grenades, known as “DBD” or “DMP,” which are explicitly designed to explode and project small rubber fragments across its blast radius.213 These fragments act as multi-projectile KIPs that cannot be aimed, resulting in a highly indiscriminate weapon. In 2016, one civilian suffered severe head trauma214 and another lost an eye215 to injuries with a de-encirclement grenade thrown by Paris police. Further reports of injuries from “sting-ball” grenades during the Yellow Vests protests—including a demonstrator who lost four fingers216—are consistent with this weapon profile.

\begin{itemize}
\item 213 Maxime Davoust, “Manifestation à Paris : Alsetex a fabriqué les grenades de ‘désencerclement,’” \textit{Les Nouvelles}, 18 June 2020, \url{https://actu.fr/pays-de-la-loire/precigne_72244/manifestation-a-paris-alsetex-a-fabrique-les-grenades-de-desencerclement_34369970.html}.
\item 214 Paul Conge, “Romain D. grièvement blessé: faut-il interdire les grenades de désencerclement?,” \textit{L’Express}, 7 June 2016, \url{https://www.lexpress.fr/actualite/societe/romain-d-grievement-blesse-faut-il-interdire-les-grenades-de-desencerclement_1799886.html}.
\item 216 Peter Stuble, “Yellow vest demonstrator injured by grenade as protesters try to storm French National Assembly,” \textit{The Independent}, 9 February 2019, \url{https://www.independent.co.uk/news/world/europe/yellow-vest-protests-paris-police-grenade-sting-ball-national-assembly-gilets-jaunes-macron-a8771701.html}.
\end{itemize}
Police in Seattle, Washington, US, have made extensive use of “blast balls.” These are a type of hybrid distraction device that combines the explosive lights and sounds of flash-bang grenades with tear gas grenades. While these grenades are not explicitly advertised as fragmentation devices, shrapnel generated by their detonation has been implicated in a number of injuries dating back to 2016, including a journalist struck in the face and several other persons injured during the George Floyd protests of 2020.

In June of 2020, the Seattle City Council voted unanimously to prohibit the use of many CCWs for protest, including blast balls. A court ruling later found the Seattle Police Department in contempt of court for violating the prohibition. In the order, U.S. District Judge Richard Jones expressed special concern over the indiscriminate and imprecise nature of blast balls and the risk they pose to peaceful demonstrators, noting that several violations of the prohibition represented use that was either indiscriminate or disproportional.
